
.

Unit 1: plain black text.

Unit 2: highlighted yellow

Note that Information contained in this document is for educational purposes.

Hogwarts Management

System
Web Application Penetration test

Selina Fahy

CMP319: Ethical Hacking 2

BSc Ethical Hacking Year 3

2020/21

.

Abstract

Web application penetration testing is a method that allows for security tests to be ran against a

website in order to test for security weaknesses and assess the impact these weaknesses have on the

owning person(s) of the website. This report aimed to assess and document risks that a malicious

hacker could pose should they have a valid account, or wish to attempt to gain access to the website.

Following the OWASP methodology, the tester conducted the tests and assessed the vulnerabilities

that were found. These tests were completed using a variety of tools that would return information

regarding the vulnerabilities. Many of the vulnerabilities were common and were documented within

this report. At the end of the test the website was determined to be too vulnerable for immediate use

without the appropriate mitigations in place.

.

Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Aim .. 2

1.3 Methodology ... 2

2 Procedure and Results .. 3

2.1 Overview of Procedure ... 3

2.2 Procedure part 1 ... 3

2.2.1 Information gathering ... 3

2.2.2 Configuration and deploy management testing ... 7

2.2.3 Identify management testing .. 11

2.2.4 Authentication testing .. 12

2.2.5 Data Validation testing .. 14

2.2.6 Error handling ... 17

2.2.7 Cryptography... 19

3 Discussion .. 20

3.1 Source Code Analysis .. 20

3.1.1 Brute-forceable Admin password ... 20

3.1.2 Robots.txt .. 20

3.1.3 Local File Inclusion .. 21

3.1.4 Hidden source code .. 21

3.1.5 Reversible cookie .. 21

3.1.6 Cookie attributes ... 22

3.1.7 Directory browsing .. 22

3.1.8 Unlimited login attempts .. 22

3.1.9 User enumeration ... 22

3.1.10 No HTTPS ... 23

3.1.11 File upload ... 24

3.1.12 Cross Site Request Forgery (CSRF) .. 25

3.1.13 SQL Injection vulnerability .. 25

3.1.14 Php information disclosure vulnerability. – phpinfo.php ... 26

3.1.15 Hidden guessable folder ... 26

.

3.2 Vulnerabilities Discovered .. 26

3.2.1 Weak or unenforced username policy .. 26

3.2.2 Weak or unenforced password policy .. 26

3.2.3 Cross-site Scripting injection (XSS) .. 26

3.2.4 Error handling ... 27

3.2.5 Brute-forceable Admin password ... 27

3.2.6 Reversible cookie .. 27

3.2.7 Cookie attributes ... 27

3.2.8 Unlimited login attempts .. 27

3.2.9 No HTTPS ... 27

3.2.10 SQL Injection ... 27

3.2.11 Hidden guessable folder ... 27

3.3 Countermeasures .. 28

3.3.1 Weak or unenforced username policy .. 28

3.3.2 Weak or unenforced password policy .. 28

3.3.3 Script injection (XSS) ... 28

3.3.4 Error handling ... 28

3.3.5 Brute-forceable Admin password ... 28

3.3.6 Robots.txt .. 28

3.3.7 Local File Inclusion .. 28

3.3.8 Hidden source code .. 29

3.3.9 Reversible cookie .. 29

3.3.10 Cookie attributes ... 30

3.3.11 Directory browsing .. 30

3.3.12 Unlimited login attempts. ... 30

3.3.13 No HTTPS ... 30

3.3.14 File upload ... 30

3.3.15 Cross Site Request Forgery (CSRF) .. 30

3.3.16 SQL Injections .. 30

3.3.17 Php information disclosure ... 31

As was seen in with the hidden comments, this is a section on the website that should be removed.

 .. 31

3.3.18 Hidden guessable folder ... 31

.

3.4 General Discussion .. 31

3.5 Future Work .. 31

4 Conclusion ... 32

4.1 Conclusion ... 32

References part 1 .. 33

References part 2 .. 35

Appendices part 1 ... 36

Appendix A – Site map .. 36

Appendix B – PHPINFO.php .. 37

Appendix C – Data Entry Points .. 61

Appendix D – SQL Injection ... 67

Appendix E – Cookie Decryption ... 69

Appendix F – Error Handling ... 70

1 | P a g e

1 INTRODUCTION

1.1 BACKGROUND

Website Application Testing is a technique that allows tests to be run on applications that are

hosted on the World Wide Web, and all corresponding functionalities and interfaces. In this

case, where the technique is specifically revolving around security and penetration testing,

the tests are performed in order to verify if the application is secure and measure that level of

security (Web Application Testing - Tutorialspoint, 2020).

With the majority of activities being able to be done through the internet there is an obvious

increase in popularity of online web applications. This can, therefore, introduce the possibility

of malicious third parties trying to gain access to the potentially sensitive data that can be

stored or sent through the applications, specifically applications that are publically exposed

(unlike an intranet on private networks, etc.).

Overall, penetration testing (pen testing) is a “preventive control measure that allows you to

analyze the status of the present security layer of a system” (Guide to Web Application

Penetration Testing, 2020).

Hogwarts management system has requested for a web application pen test, and a user-level

account has been administered to the penetration tester, who will attempt to find

vulnerabilities and errors that could be exploited by users of the website (e.g.

student/staff/malicious hackers).

Through this, Hogwarts management system will be able to get an in-depth and focused

report on any potential issues with the web application. As, unlike just using automated

scanning and pen testing tools, a penetration tester can manually ascertain issues and deal

with more complex testing in which can lead to few false negatives (Kinsbruner, 2020). This can

then lead to less extra work for the corresponding team who would need to validate whether

a reporting error was true or false.

2 | P a g e

1.2 AIM

The aim of this report is to conduct a web application penetration test to assess and

document the risks that an attacker, who has a valid account, poses.

Through the use of a methodology, the penetration tester will conduct a structured series of

attacks in hopes to identify all possible vulnerabilities. This report will endeavor to capture

and explain the attacks, the meaning behind them as well as their significance to the company.

In order to achieve this the following objectives should be met:

• Active and passive reconnaissance – gaining information about the web application

through the use of tools like ‘nmap’, ‘shodan’, ‘nslookup’ command, googling

information, etc.

• Enumeration of the web application

• Using the methodology selected to find and document vulnerabilities – with the

information gathered in step 1 as a basis and using tools like ‘nmap’, ‘nessus’, ‘ZAP’,

etc. to find and exploit vulnerabilities.

• Reporting and recommendations – report all finding of vulnerabilities supported by

data/evidence, categorize them and recommend ‘fixes’ to remove the risks of

exploitation.

1.3 METHODOLOGY

The penetration tester will follow the OWASP v4 methodology (tanprathan/OWASP-Testing-Checklist, 2020).

This method is a part of OWASP and was created by many cybersecurity professionals and volunteers in

order to produce a comprehensive guide to web application security testing.

This methodology covers the following:

• Information gathering – tools used to gather relevant information: nmap, Burp suite, ZAP.

• Configuration and Deploy Management Testing – tools used: Nessus, Nikto, gobuster, Burp suite.

• Identity Management Testing – tools used: Burp suite.

• Authentication Testing – tools used: Burp suite, SQLmap, Mantra.

• Data Validation Testing – tools used: SQLmap, Burp suite.

• Error Handling – tools used: Burp suite.

• Cryptography – Nessus, Nikto.

3 | P a g e

2 PROCEDURE AND RESULTS

2.1 OVERVIEW OF PROCEDURE

Following the OWASP V4 methodology, the first step was information gathering and web application

mapping. This has been documented with the information that was able to be gathered through the

Admin authorization in order to avoid repetition later on.

2.2 PROCEDURE PART 1

2.2.1 Information gathering

Following the OWASP V4 methodology, the tester started with information gathering and the tools that

had mostly been used were Burp suite and ‘gobuster’.

2.2.1.1 Burp suite – Site Map

Burp suite is a tool commonly used to map out web applications as well as to attack them, for example

brute forcing usernames and passwords, etc.

For the start of the pen test the tester had used Burp suite to create a site map. This is created a map of

the contents of the website as the tester went from page to page and testing all the linked and user

input fields that the tester came across.

However, Burp suite cannot find pages that are not linked to the main pages.

The full map of the web application can be found in Appendix A.

2.2.1.2 Gobuster

‘Gobuster’ is a directory brute forcing tool that allows for common directory names to be tried against a

website to see if the website has these directories.

Through the use of ‘gobuster’ the tester was able to look for other directories (Figure 1) for the website

that could not be found through the use of Burp suite. Also through the use of ZAP and authenticated

access (admin) a more in-depth search was conducted (Appendix A section b).

4 | P a g e

Furthermore, through the use of different lists it was possible to find a few more hidden directories such

as phpinfo.php (Appendix B), which revealed important information about the version of PHP being used

and its directory.

Also, having a look through the /CYBERDOCS25 and the /printers directories lead to finding a file called

sqlcm.bak which seems to be an SQL backup file that would monitor SQL attacks on the login pages of

the website.

2.2.1.3 Robots.txt

After searching through directories the tester came across the robots.txt file. The robots.txt file is a file

intended to be used by search engines that use content crawlers to get information about allowed and

disallowed pages.

The Robots test file contained the directory for a text document.

Robots.txt:

User-agent: *

Disallow: ZJDTYMXCTVQT/doornumbers.txt

The text file was extracted through the use of the ‘wget’ command.

Figure 1 – Gobuster directories

Figure 2 – sqlcm.bak

5 | P a g e

Doornumbers.txt:

Keypad entry numbers for company rooms:

Room 1526 - 2468

Room 2526 - 1357

Room 3615 - 5678

The file retrieved was a file that seeming contained codes for doors, it is presumed that this would allow

you to access these rooms.

2.2.1.4 Webpage Comments and Metadata for Information Leakage

Next, the tester looked through the HTML on the web pages by bringing up the developer tools and

inspecting the website, as well as what could be seen through ZAP.

This allows anyone to be able to look at how the website had been constructed, viewing HMTL, CSS,

JavaScript, etc.

Through the Hogwarts Management System, the tester was able to find information that was left in the

comments, which can be seen Figure 3.

Furthermore, the tester was able to find reference to the phpinfo.php file that can be access on the

system as seen in Figure 4, though it does claim that access should be disabled in the ‘real version’.

2.2.1.5 Data entry points

While the tester was moving through the website, the tester made note of all the data entry points that

all users had. This was confirmed through the usage of Burp suite, which allowed for the tester to see

that the information inputted by the user was being sent to the web server (Figure 5).

Figure 3 – Door key comment in source code

Figure 4 – phpinfo.php commented in CSS file

6 | P a g e

An overview of the entry points for student users:

• Login – index.php

o Username

o Password

• Profile – studentprofile.php

o Picture upload

o Favorite spell

o Favorite teacher

• Change password – changepassword.php

o Old password

o New password

An overview of the entry points for admin users:

• Login – index.php

o Username

o Password

• Profile – profile.php

o Picture

o Favorite spell

o Favorite teacher

• Change password – changepassword.php

o Old password

o New password

• Add teacher

o Teacher name

• Add subject

o Subject name

Figure 5 – input fields of the profile area captured in Burp suite

7 | P a g e

Furthermore, through the use of Burp suite, hidden fields were found on the website. These hidden

fields appeared on all accounts (student/admin etc.). These fields allowed for one user to be able to edit

another users’ information, as these hidden fields set the ‘id’ (Appendix C).

2.2.2 Configuration and deploy management testing

2.2.2.1 Nikto

Nikto is a web server scanner that will tests for website vulnerabilities based on information about the

versions used. However, given the case of version checking it is possible for Nikto to give false positives,

and therefore it would require confirmation (Kali, 2020).

Through Nikto the tester was able to see various alerts for outdated versions of PHP, OpenSSL and so on

(Figure 6 and 7).

Figure 6 – Nikto output

8 | P a g e

2.2.2.2 Nessus

Nessus is a remote security scanning tool which allowed the tester to scan the web server and check for

vulnerabilities (Nessus, 2020).

After downloading and activating the Nessus tool the tester was able to see the many vulnerabilities and

alerts that Nessus found. An overview of what was found can be seen in Figures 8, 9, 10 and 11.

Figure 7 – Nikto output

9 | P a g e

Figure 8 – Apache HTTP server vulnerabilities

Figure 9 – PHP vulnerabilities

10 | P a g e

Figure 10 – SSL/TLS vulnerability

Figure 11 – TLS vulnerabilities

11 | P a g e

Overall, Nessus claims that the Hogwarts Management System is vulnerable to many Denial of Service

vulnerabilities through the outdated version of OpenSSL, potential remote file inclusion with the

outdates PHP version, and cross-site scripting (XSS) and other vulnerabilities for the outdates Apache

server version.

2.2.3 Identify management testing

2.2.3.1 Weak or unenforced password policy

Having a strong password policy is of great importance when it comes to protecting a website from

attacks. Specifically against brute forcing and password guessing.

During the penetration test the tester came across the ‘change password’ section of the menu bar, and

attempted to change the password. Upon changing the password the tester did not see any form of

policy in creating the new password. There was a lack of acknowledgment for the length of the

password and whether or not it contained any numerical or special characters.

In Figure 12 it can be seen that the tester was able to change the password to a single letter; ‘d’.

2.2.3.2 Weak or unenforced username policy

At the beginning of the penetration test, Dr. Albus Dumbledore (the owner of the application) gave the

username of hpotter to Harry Potter (the account used by the tester). This was a signal that the other

usernames could be set up in a similar fashion. So, following this and gaining the full names of all the

students and teachers (Figure 14), after successfully logging in as hpotter, the tester was able to

enumerate all the usernames of students and teachers.

Figure 12 – Password changing Burp suite

Figure 13 – The password successfully updated

12 | P a g e

2.2.4 Authentication testing

2.2.4.1 Mantra

Cookies

OWASP mantra is a browser based security framework that can be used to help in exploits and

vulnerability finding (OWASP Mantra - Security Framework, 2020).

Through the use of the tool OWASP mantra and Cookies Manager+ the tester was able to get the cookie

and the PHPSESSID after logging in with the provided credentials (Figure 15 and Figure 16).

Figure 14 – Names of users

Figure 15 – Cookies Manager+

13 | P a g e

Through this the tester was able to find that the cookie was encrypted using hex and base64, providing

the username followed by the password which was hashed using MD5.

This is a potential risk given that MD5 is a very weak hash, and easily broken, the detailed decryption

can be seen in Appendix E.

2.2.4.2 HTTP or HTTPS – Burp suite

Through the use of Burp suite the tester was able to confirm that the website used HTTP connection

over HTTPS. HTTP is an unsecure connection that sends data over port 80 (Figure 17) (What is the

Difference Between HTTP and HTTPS? - KeyCDN, 2020).

2.2.4.3 Weak password change or reset functionalities

On the website’s menu bar that allows for the user to change their password, and had been previously

explore for the detection of password policies, the tester tested for any issues regarding the changing

process.

Here the tester came across the form to test for any restrictions on changing the password. The tester

deliberately entered various random letters to the ‘Old password’ field in the form and typed in a new

password (‘test’), in order to test to see if the web application is checking that the user has entered the

correct original password (Figure 18).

Figure 16 – Secret cookie that reveals login information

Figure 17 – Burp suite connection

14 | P a g e

This resulted in the old password parameter not being checked against the original password, and

resulted in the password being changed to the new one (Figure 19).

2.2.5 Data Validation testing

2.2.5.1 SQLmap

SQLmap was a tool employed by the tester in order to test for SQL injection. This tool automated SQL

injections in order to determine if there are any SQL flaws and if it is possible to take over the database

server (sqlmap: automatic SQL injection and database takeover tool, 2020).

By using Burp suite to capture the information that would be passed to the web server and saving it as a

text file the tester was able to use SQLmap in order to test for SQL injection as well as attempt to gain

information about the data that might be stored in the database, using the command ‘sqlmap –r

data.txt’.

After successfully gaining access to the database the tester requested for all the databases connected to

the server to be dumped. As can be seen in Figure 20 below there are several databases that were

presumed to be connected to other websites. This is a critical vulnerability as not only is Hogwarts

Management System in danger if an attacker was able to successfully enumerate the database

information, but other websites and users would be affected too.

Figure 18 – Password checking test

Figure 19 – Successful update

15 | P a g e

The tester only worked with the information regarding Hogwarts Management Systems.

Firstly, it was seen that the Hogwarts Management Systems was connected to the visions database, and

after dumping all the information from there the tester found all the users credentials in the ‘users’

table. Through using SQLmap the hashed passwords were also able to be cracked, and the tester had

access to the majority of accounts on the website. The detailed screenshots can be found in Appendix D.

Furthermore, access to the admin account was achieved through injecting SQL commands into the

username field of the login page as seen in Figure 21 and the successful access to the admin page and

user in Figures 22 and 23.

Figure 20 – databases found on the server

16 | P a g e

Figure 21 – SQL injection in username field

Figure 22 – Successful execution and received admin

page

Figure 23 – Admin user

17 | P a g e

2.2.5.2 Script injection (XSS)

Following on from the hidden input fields found in Information gathering - Data entry points, the tester

found that some of these fields are susceptible to reflected cross-site scripting.

Reflected XSS is when JavaScript can be injected into the webpage and can display information that the

user asks for, though is not stored on the web application server (Academy and scripting, 2020).

In Figure 24 and Figure 25 a successful XSS attack occurs and returns the value that the tester asked for.

This can potentially allow a user to inject malicous JavaScript code into the web page and affect other

users who might be present during the session.

2.2.6 Error handling

2.2.6.1 Analysis of error codes

Error handling is an important part of securing a web application. Improper handling of errors can lead

to leaks of important information such as; database dumps, error codes, etc. (Improper Error Handling |

OWASP, 2020).

During the testing of the web application, the tester came across many errors that reveal important

information about the implementations of the database servers as well as the username and passwords

of the users.

In regards to the login page, we get two errors; 1) when the username is incorrect (Figure 26) and 2)

when the password is incorrect (Figure 27). This allows for the attack to know when a username is

correctly guess and if the password matches or not.

Figure 24 – JavaScript injection attack

Figure 25 – JavaScript successfully reflected

18 | P a g e

Furthermore, within the login area, more information about the construction of the 2 fields is revealed

during a ‘UNION’ attack (Appendix F section a).

In other areas where users can input data, more information is revealed such as; the location of the

edits and where the original information is (Figure 28).

There is further errors which show more information in the admin area of the website, where SQL

commands can be inject and return the syntax error as well as the command the input is being passed to

(Appendix F section b).

Figure 26 – Incorrect username

Figure 27 – Incorrect password

Figure 28 – location of changepassword.php as well as the new and old password

19 | P a g e

2.2.7 Cryptography

2.2.7.1 Testing SSL/TSL ciphers

Following the Nessus and Nikto vulnerability alert for OpenSSL on the web application the tester went

and looked for the vulnerability/exploit for this particular version (Figure 29).

For the version that is running on the web application, the vulnerability is mostly susceptible to Denial of

Service attacks and overflow.

Figure 29 – OpenSSL Vulnerability exploit

20 | P a g e

3 DISCUSSION

3.1 SOURCE CODE ANALYSIS

Source code analysis allows for analysers to manually and/or automatically find security related

problems in software (Source Code Analysis Tools - Overview | CISA, 2021). Below is the

documentation of vulnerabilities that the tester found having been provided the source code for

the website.

3.1.1 Brute-forceable Admin password

Through the use of bruteforcing tools such as Hydra, ZAP and so on, it is possible for a malicious hacker

to brute force a user’s account. Through this it was possible for the tester to gain access to the

administrators account. This was noted by a lack of a counting variable or function that would then

restrict a user/IP address from further attempts after a set number of failed attempts have been

reached.

3.1.2 Robots.txt

Through the use of the ‘gobuster’ tool the tester was able to find a ‘robots.txt’ file on the web server.

After having found it and located a disallowed folder and traversing to it, found information about room

numbers and keys. This security issue has the potential to allow for a malicious attacker to attempt

physically entry to the company, and allow for further attacks. The robots.txt file was found in the root

directory of the website and was visible to the public.

The robots.txt file should not be a file used to hide sensitive information, as it is being used here (Figure

30 and Figure 31).

Figure 30 – Robots.txt

Figure 31 – Robots.txt room keys

21 | P a g e

3.1.3 Local File Inclusion

Through having a look at the extras.php file, it was determined that the website was vulnerable to Local

File Inclusion (LFI). The source code that denotes this can be seen in Figure 32.

This vulnerability allows a malicious attack to have the ability to traverse files on the machine that hosts

the web server through the ‘?action=home.php’ by changing the ‘home.php’ section to something such

as, ‘../../etc/shadow’. Though it has been noted that there has been an attempt to stop this in the form

of the ‘lfifilter.php’ file (Figure 33), however this can be bypassed through the use of obfuscation. In

such the use of ‘../’ is changed to a different format that may not be recognized during the filtering of

the input and can therefore lead to the execution of the command in the URL bar.

3.1.4 Hidden source code

Through looking through the source code for the website, the tester was able to find a few comments

that contained some sensitive information regarding the website (Figure 34) as well as about the

company/doors (Figure 35).

These bits of information can put the website and the company at risk, as Figure 34 shows that there is a

phpinfo page that will show all the information about the website and the versions of code that are

being used. While Figure 35 shows once again an entry number for another room within the company.

3.1.5 Reversible cookie

After looking at the ‘cookie.php’ file the tester took note of the section that handled the cookie content

and the hashing process.

The cookie contained the username and the md5 hashed password (Figure 36) of the user and a time

stamp and then encoded it using base64 and hex (Figure 37).

Figure 32 – Local File Inclusion vulnerability

Figure 33 – lfifilter.php

Figure 34 – Comment at top of index.php file

Figure 35 – Hidden comment

22 | P a g e

This lack of security would make it easy for a malicious attacker to gain user credentials if they are able

to spoof a user’s cookie. Through the use of tools such as icyberchef.com, it would be simple for a

malicious hacker to decode the cookie and get the credentials.

3.1.6 Cookie attributes

Through scans, the vulnerability of HTTPOnly not being set was brought to light. HTTPOnly flag allows

for basic Cross-site scripting to be filtered and even if this specific flaw is exploited it would not expose

the users’ cookie to a third party (HttpOnly - Set-Cookie HTTP response header | OWASP, 2021).

Therefore, looking through the cookie.php file it was noted that there was a lack of secure and

HTTPOnly flags, as can be seen in Figure 37 above in the “setcookie”.

3.1.7 Directory browsing

For directory browsing to occur the variable related to it in the configurations file would need to be

enabled. Hogwarts management systems website has directory browsing enabled, in which a user is

able to get a list of directories for the website. Though not ultimately a vulnerability, it is suspected that

there is a lack of access control, which can lead to the potential harm that a malicious hacker could do if

they were able to get to the directory index (Center, Definitions and listing, 2021). This may allow for a

malicious hacker to be able to gain access to the php of the website and circumvent any security

measures that have been put in place on the entire website.

3.1.8 Unlimited login attempts

Through tests it was found that there were no implementations regarding restricted attempts on

accessing a user’s account. This makes it easier for a malicious hacker to brute force user credentials and

also much quicker.

Through this the tester went through the index.php file and did not find any code relating to any form of

lockout after failed attempts of logging in.

3.1.9 User enumeration

While testing the website the tester found that there was a lack of appropriate error handling on the

login page, and it was possible to test usernames until a ‘confirmation’ error was returned that informed

the user that the password for the username entered was incorrect, over the username not found error

(Figure 26 and Figure 27).

Figure 36 – Password MD5 hash

Figure 37 – Cookie.php contents

23 | P a g e

Having looked through the source code files it was noted within the index.php file the ‘Incorrect

password’ error is shown when the username is valid and at least one row in the database is returned

but does not satisfy the SQL command of both the username and the password entered being equal to

the username and password stored in the database, which can be seen in Figure 38.

In which there is an included file (username.php) pertaining to the usernames – which returns the

‘Username not found’ error when a username not found in the database is entered, thus making it

possible to enumerate the username/password combinations (Figure 39).

3.1.10 No HTTPS

As has been noted by the tester, the website does not run HTTPS, but HTTP instead. This make the

website more susceptible to sniffing attacks, as well as allowing any information obtained to be

tampered with as there is a lack of encryption of the data being passed to and from the web server.

Figure 38 – Code returning the ‘Incorrect Password’ error

Figure 39 – Code returning the ‘Username not found’ error

24 | P a g e

3.1.11 File upload

Parsing through the changepicture.php file and the studentprofile.php file, a file upload vulnerability

was found. This vulnerability allows for the uploading part of the website to be abused and malicious

attacks to be attempted.

The code pertaining to this vulnerability only stops the submission of file types other than images, while

it is possible for a hacker to change the file type/extension after the submit button is selected through

the use of a proxy, such as burp suite, where the extension can be altered.

The source code that was noted for this vulnerability can be seen in Figures 40 and 41.

Furthermore, there was the issue of the files uploaded being allowed to be executed by anyone. When

parsing through the 2 files mentioned, the tester found an interesting line of code seen in Figure 42. This

line allows for any user to be able to read, write, and execute the uploaded files (Banting, 2021).

Figure 40 – File type filter

Figure 41 – extension filter

25 | P a g e

3.1.12 Cross Site Request Forgery (CSRF)

The tester was able to determine that there was a fault with the update password section. After looking

at the source code for this section it was noted that this is susceptible to Cross-site Request forgery. This

will allow someone else to be able to alter a user’s password through conventional means, such as by

sending them a link that will allow the malicious attacker to change the user’s password without them

knowing. The source code can be seen in Figure 43 and Figure 44.

3.1.13 SQL Injection vulnerability

After looking through the index.php file the tester was able to locate a section in the php code that was

vulnerable to SQL injection (Figure 45).

Figure 45 shows that the user’s input is directly inputted into the sql command, therefore making it

possible to inject malicious code.

However, it was noted that there was an attempt to filter through this, as can be seen in Figures 46 and

47.

Figure 42 – chmod permissions allowing for execution of uploaded files

Figure 43 – changepassword.php include updatepassword.php

Figure 44 – updatepassword.php content

Figure 45 – SQL injectable code

Figure 46 – SQL injection include file in index.php

Figure 47 – sqlcm.php contents

26 | P a g e

3.1.14 Php information disclosure vulnerability. – phpinfo.php

It was noted that there was a phpinfo.php file within the websites directory and after looking at the

contents (Figure 48) found that it relayed all information about the website versions.

3.1.15 Hidden guessable folder

Through the use of ‘gobuster’ previously the tester was aware of a hidden file called CYBERDOC25,

which was confirmed when looking at the directories. Hidden folders such as this are usually places

where sensitive information can be found – especially if the folder name can be bruteforced and

therefore be found.

In this case it can be seen in Figure 49 that this hidden folder had the SQL database backup file in it,

which lead to the tester learning earlier on about the SQL injection filters that were in place.

3.2 VULNERABILITIES DISCOVERED

3.2.1 Weak or unenforced username policy

A lack of a strong username policy makes it easier for a malicious hacker to enumerate the usernames of

the users of the website. As was seen in section 2.2.3.2, all the usernames were the first initial followed

by the last name.

After enumerating usernames of users on the website, it becomes much easier for a malicious hacker to

attack the website and gain access to accounts.

3.2.2 Weak or unenforced password policy

As was noted by the tester, there was a lack of a strong password policy. This makes it easier for an

attacker to guess or bruteforce the passwords against a list of usernames enumerated in the previous

section. This will allow a malicious hacker to be able to gain access to user accounts.

3.2.3 Cross-site Scripting injection (XSS)

Cross-site scripting (XSS) is a common vulnerability that has the potential to be quite dangerous to the

users and the website. Through XSS it is possible for a malicious hacker to gain information about a user,

e.g. their unique cookie, or about the webpage/website, e.g. the version of php running.

Figure 48 – phpinfo.php contents

Figure 49 – sqlcm.bak contents

27 | P a g e

3.2.4 Error handling

The error handling issue identified earlier, also, revealed too much information regarding the website

and the folders that the information is being pulled from, as can be seen in section 2.2.6.

3.2.5 Brute-forceable Admin password

Through the use of external bruteforcing tools, such as Hydra or Burp Suite, it is possible for a malicious

hacker to bruteforce any of the passwords, but most dangerously the admin password. This will allow

for a malicious hacker to then have the ability to have complete control over the website and the users.

3.2.6 Reversible cookie

The cookies that are being generated by the webserver are easily decoded. With the use of outdated

and easily broken encoding and hashing algorithms such as hex, base64, and md5 it would be a simple

matter for an attacker to obtain the information stored inside the cookie, and in this case obtain a user’s

credentials.

3.2.7 Cookie attributes

On further inspection, the lack of attributes within the cookie adds to the risk that is posed against the

users should a cookie be captured. The lack of a secure or HTTPOnly flag allows for unique cookies to be

captured and read by third parties such as a malicious hacker.

3.2.8 Unlimited login attempts

By not tracking the number of failed attempt a certain IP address makes, can allow for a malicious

hacker to have unlimited attempts in bruteforcing user credentials.

3.2.9 No HTTPS

By running the webserver on HTTP the connection made by the website and the user is not encrypted

and makes it more vulnerable to man-in-the-middle attacks, where information passed between these

two devices can be caught, observed, and potentially tampered with.

3.2.10 SQL Injection

The preg_match function within the sqlcm.php file is limited to only the most common actions used

when manually attempting SQL injection, but not to the entire injection itself. For example; if a

malicious hacker was to use a number greater than 9, a letter other than b, or even use negative

numbers or capital letters, then they can successfully circumvent this filter. Furthermore, there is the

use of automated tools which can be used to exploit this weakness as well.

3.2.11 Hidden guessable folder

Folders that contain potentially sensitive information that are required to be accessible from the

website are most susceptible to being a target if a malicious hacker is able to identify it through the use

of predetermined wordlists.

Through one such list it was possible for the tester to be able to find multiple ‘hidden’ sections of the

website that did not have a link on the menu bar on the main page of the website. Some examples of

these hidden sections would be the CYBERDOC25 folder, phpinfo.php file, and the admin login page.

28 | P a g e

3.3 COUNTERMEASURES

3.3.1 Weak or unenforced username policy

The best way to remove this vulnerability would be to set a strong username policy that will allows users

to create/get unique usernames, as well as see how strong their username is.

3.3.2 Weak or unenforced password policy

A good method in order to mitigate this vulnerability would be to set a strong password policy that will

allow the user to see the strength of the password that they are choosing. Furthermore, to have a

minimum of 8 characters including special symbols, letters, and numbers.

3.3.3 Script injection (XSS)

One method to mitigate this vulnerability would be to remove all <script> tags as this will remove any

and all vulnerable JavaScript. However, in any case where this is not ideal, it would otherwise be

suggested to sanitize client inputted information.

3.3.4 Error handling

The best way to resolve this vulnerability would be to reduce the amount of information revealed

in an error. For example, not to reveal any information regarding correct details entered into a

login field. Moreover, not to leave any errors returned from the database open to the public, or to

the directories located on the hosting machine (Figure 28 and Appendix F).

3.3.5 Brute-forceable Admin password

One method that would remove this risk would be to have the users set strong passwords – through the

use of a strong password policy and showing the users how strong their passwords are.

Furthermore, this risk can be mitigated through the implementation of a lockout. After a certain number

of failed attempts to get into a user’s account, there should be a temporary lockout before the user can

try again. The use of a counting variable for failed attempts and if else statements of the

successful/unsuccessful login is one way of achieving this. A temporary ban for the IP address related to

the ongoing failed attempts may also be a good method of mitigated the vulnerability.

3.3.6 Robots.txt

Some better uses for the robots.txt that have been considered would be to have the disallowed crawl be

parts of the website that are not public facing, such as the admin page.

A recommended solution to this would be to remove the ‘doornumbers.txt’ file from the webpage and

to remove the disallowed section from robots.txt or change the robots.txt disallowed to something that

does not contain any form of sensitive and important information.

3.3.7 Local File Inclusion

In order to mitigate the Local file inclusion (LFI) vulnerability noted within the source code, beyond the

filters that have been applied, would be to use strong input validation. The web server should restrict

29 | P a g e

the pages that can be shown to a whitelist and present an error code if a user attempts to go anywhere

else.

For example; to have an if statement that allows for a user to only transverse through pages that are on

a pre-written whitelist, e.g. index.php, login.php, home-page.html, etc. Then, if a user attempts to look

for a page outside of this list, an error can be returned. This will stop a malicious hacker from being able

to active an uploaded php file that would be stored within the ‘pictures’ directory.

Another way to help reduce the risk of LFI would be to have the php code run on the latest version of

the php server, and to ensure that ‘register_globals’ are not being used (Chandel, 2021).

3.3.8 Hidden source code

The tester would recommend that these comments be removed ASAP, especially the phpinfo.php file

which contains a lot of sensitive information regarding the web server, and made a note of (e.g.

physically) in order to make sure they are not forgotten.

3.3.9 Reversible cookie

In order to mitigate the vulnerability of someone being able to gain access to someone else’s account by

spoofing their cookie would be to use more complex hashing algorithms. For example instead of using

“md5”, currently outdated and highly recommended to be not used, to hash the password but a newer

hashing algorithm such as; bcrypt (Figure 36), Argon2i (Figure 37), or PHP password_hash default

password hashing algorithm (Figure 38) (How to use bcrypt for hashing passwords in PHP? -

GeeksforGeeks, 2021).

The above mentioned hash types are newer and harder to reverse, so even if an attacker was able to get

someone else’s cookie, they most likely would be unable to gain that user’s password.

Figure 36 – BCRYPT password hash

Figure 37 – Argon2i password hash

Figure 38 – Default password hash

30 | P a g e

Furthermore, another method could be to remove the sensitive data stored in the cookie (user

credentials) to something else to identify the user without giving away important information about

them.

3.3.10 Cookie attributes

Within a php script the HTTPOnly flag can be found in one of two places; permanently within the php.ini

where it is possible to turn on the HTTPOnly flag (Figure 39) or within a function (Figure 40).

3.3.11 Directory browsing

The best way to mitigate this potential risk would be to disable directory browsing in the website

configurations file.

3.3.12 Unlimited login attempts.

See section 3.3.2.

3.3.13 No HTTPS

To mitigate this vulnerability would be to run the webserver on HTTPS instead of HTTP, in order to

encrypt the connection and remove the chances of a malicious hacker gaining information and

potentially tampering with data of a user.

3.3.14 File upload

A method of removing this vulnerability would be to make the upload location of the file non-public, as

this will not allow a malicious hacker to ‘activate’ a reverse shell or traverse to it. Furthermore, to

reduce the likelihood of a malicious hacker uploading a malicious piece of code with an altered

extension would be to use secure plug-ins that will help in preventing file upload vulnerabilities (Banu

and Banu, 2021).

3.3.15 Cross Site Request Forgery (CSRF)

A method of reducing this vulnerability would be to check for the IP source of the request and ensure

that the origins match the process request. Furthermore, there could be a re-authentication process to

ensure that it is indeed the users requesting a password change.

3.3.16 SQL Injections

An excellent method of mitigating this vulnerability would be to use prepared statements. This will allow

for the pre-written commands to be bound to the variable, and remove the ability of user inputted data

affecting the command and leading to unintended access to user accounts without permission.

Figure 39 – HTTPOnly flag php.ini

Figure 40 – HTTPOnly flag in a function

31 | P a g e

3.3.17 Php information disclosure

As was seen in with the hidden comments, this is a section on the website that should be removed.

3.3.18 Hidden guessable folder

A method of reducing this risk would be to use folder and file names that cannot be brute forced

through the use of common word lists such as rockyou.txt. This would involve producing unique

folder/file names that the appropriate users will be aware of (e.g. admin), so that they have access to

the information that is relevant to them, and decreasing the likeliness of a malicious hacker obtaining it.

3.4 GENERAL DISCUSSION

The aim of the penetration test was to conduct a series of tests in order to assess the security

level of the website. These tests went to show that there are security holes within the website

that can reveal unnecessary information to an attacker and can be abused to allow for certain

actions to be taken, for example uploading reverse shell php code, that would damage the

website or provide further sensitive information regarding the company and/or the users. This

supports Dr. Dumbledore’s concern that the website had some issues, as it is susceptible to many

common attacks. Given the limited amount of time to work on the website, it is possible that

some vulnerabilities were missed. It is also possible that through the use of some automated tools,

to scan the website in search for vulnerabilities, that some vulnerabilities may not have been

found/noticed.

The tests and documentations that have been reported will allow for the website developers of

Hogwarts Management Systems to be able to locate and mitigate the vulnerabilities.

3.5 FUTURE WORK

If more time was available, it would have been possible to do more in-depth testing, for example

testing for the ‘shellshock’ vulnerability that was flagged during a much later scan. Furthermore, a

variety of other tools could have been used, in order to compare results and see if there may have

been further vulnerabilities that one scanning tool was not able to locate.

One such tool that could have been used would be Acunetix. This tool could have been used to compare

results with Nessus results. Furthermore, the tool Vega could have been used in order to further check if

any of the previous tools used provided false positives, and also to get further information regarding any

security settings for TLS/SSL (Vega Vulnerability Scanner, 2021).

32 | P a g e

4 CONCLUSION

4.1 CONCLUSION

In conclusion, many vulnerabilities were found and documented in the report to the client (Hogwarts

Management Systems). As per the aim of this report, there are recommendations of methods to reduce

the risk that these vulnerabilities pose and their impact on the company and users.

If used in its current state, ignoring all vulnerabilities or being left unattended, there would be a high risk

of a malicious hacker successfully attacking the website and obtaining sensitive information and

potentially doing damage to the website itself and the databases connected to it. Therefore, it is highly

recommended that the website receive the appropriate attention in attending to the vulnerabilities and

increasing the security and reliability of the website.

33 | P a g e

REFERENCES PART 1
For URLs, Blogs:

Owasp.org. 2020. OWASP Web Security Testing Guide. [online] Available at:

<https://owasp.org/www-project-web-security-testing-guide/> [Accessed 14 December 2020].

Tutorialspoint.com. 2020. Web Application Testing - Tutorialspoint. [online] Available at:

<https://www.tutorialspoint.com/software_testing_dictionary/web_application_testing.htm>

[Accessed 14 December 2020].

Relevant Software. 2020. Guide To Web Application Penetration Testing. [online] Available at:

<https://relevant.software/blog/penetration-testing-for-web-

applications/#Why_Is_Penetration_Testing_Important> [Accessed 14 December 2020].

Tutorialspoint.com. 2020. Web Application Testing - Tutorialspoint. [online] Available at:

<https://www.tutorialspoint.com/software_testing_dictionary/web_application_testing.htm>

[Accessed 14 December 2020].

GitHub. 2020. Tanprathan/OWASP-Testing-Checklist. [online] Available at:

<https://github.com/tanprathan/OWASP-Testing-Checklist> [Accessed 14 December 2020].

Kinsbruner, E., 2020. Manual Testing Vs. Automated Testing | By Perforce. [online] Perfecto by

Perforce. Available at: <https://www.perfecto.io/blog/automated-testing-vs-manual-testing-

vs-continuous-

testing#:~:text=There%20are%20some%20major%20differences,with%20other%20tools%20an

d%20software.> [Accessed 14 December 2020].

Tools.kali.org. 2020. [online] Available at: <https://tools.kali.org/information-gathering/nikto>

[Accessed 14 December 2020].

Cs.cmu.edu. 2020. Nessus. [online] Available at:

<https://www.cs.cmu.edu/~dwendlan/personal/nessus.html> [Accessed 14 December 2020].

SourceForge. 2020. OWASP Mantra - Security Framework. [online] Available at:

<https://sourceforge.net/projects/getmantra/> [Accessed 14 December 2020].

KeyCDN. 2020. What Is The Difference Between HTTP And HTTPS? - Keycdn. [online] Available

at: <https://www.keycdn.com/blog/difference-between-http-and-https> [Accessed 14

December 2020].

Kedrosky, E., Pam Sornson, J. and Clark, M., 2020. Why A Strong Password Policy Is So

Important For Your Wordpress Website - Security Boulevard. [online] Security Boulevard.

Available at: <https://securityboulevard.com/2020/09/why-a-strong-password-policy-is-so-

important-for-your-wordpress-

website/#:~:text=Implementing%20a%20strong%20password%20policy%20is%20so%20import

34 | P a g e

ant%20because%20it,their%20way%20into%20the%20account.> [Accessed 14 December

2020].

Sqlmap.org. 2020. Sqlmap: Automatic SQL Injection And Database Takeover Tool. [online]

Available at: <http://sqlmap.org/> [Accessed 14 December 2020].

Academy, W. and scripting, C., 2020. What Is Reflected XSS (Cross-Site Scripting)? Tutorial &

Examples | Web Security Academy. [online] Portswigger.net. Available at:

<https://portswigger.net/web-security/cross-site-scripting/reflected> [Accessed 14 December

2020].

Owasp.org. 2020. Improper Error Handling | OWASP. [online] Available at:

<https://owasp.org/www-community/Improper_Error_Handling> [Accessed 14 December

2020].

35 | P a g e

REFERENCES PART 2

Us-cert.cisa.gov. 2021. Source Code Analysis Tools - Overview | CISA. [online] Available at: <https://us-

cert.cisa.gov/bsi/articles/tools/source-code-analysis/source-code-analysis-tools---overview> [Accessed

12 January 2021].

Owasp.org. 2021. Httponly - Set-Cookie HTTP Response Header | OWASP. [online] Available at:

<https://owasp.org/www-community/HttpOnly> [Accessed 12 January 2021].

Center, S., Definitions, I. and listing, D., 2021. Directory Listing. [online] Portswigger.net. Available at:

<https://portswigger.net/kb/issues/00600100_directory-

listing#:~:text=Directory%20listings%20themselves%20do%20not%20necessarily%20constitute%20a,the

%20location%20of%20sensitive%20files%20using%20automated%20tools.> [Accessed 12 January 2021].

Banting, K., 2021. 0777 Permissions Security Risk - What You Need To Know... - Business-In-Site. [online]

Business-in-site.com. Available at: <http://www.business-in-site.com/webmaster-articles/0777-

permissions-security-risk-know/> [Accessed 12 January 2021].

Chandel, R., 2021. Comprehensive Guide On Local File Inclusion (LFI). [online] Hacking Articles. Available

at: <https://www.hackingarticles.in/comprehensive-guide-to-local-file-inclusion/> [Accessed 12 January

2021].

GeeksforGeeks. 2021. How To Use Bcrypt For Hashing Passwords In PHP? - Geeksforgeeks. [online]

Available at: <https://www.geeksforgeeks.org/how-to-use-bcrypt-for-hashing-passwords-in-

php/#:~:text=The%20bcrypt%20is%20a%20password%20hashing%20technique%20used,It%20uses%20

a%20strong%20&%20robust%20hashing%20algorithm.> [Accessed 12 January 2021].

Banu, S. and Banu, S., 2021. File Upload Vulnerability - How To Prevent Hackers From Exploiting It.

[online] MalCare. Available at: <https://www.malcare.com/blog/file-upload-

vulnerability/#:~:text=%20How%20to%20Protect%20Your%20Website%20From%20File,the%20file%20u

pload%20function%20on%20your...%20More%20> [Accessed 12 January 2021].

Subgraph.com. 2021. Vega Vulnerability Scanner. [online] Available at: <https://subgraph.com/vega/>

[Accessed 12 January 2021].

36 | P a g e

APPENDICES PART 1

APPENDIX A – SITE MAP

a) Site map – Burp suite

b) Site map – ZAP admin authenticated

37 | P a g e

APPENDIX B – PHPINFO.PHP

a) Information about the website that was found at phpinfo.php

38 | P a g e

39 | P a g e

40 | P a g e

41 | P a g e

42 | P a g e

43 | P a g e

44 | P a g e

45 | P a g e

46 | P a g e

47 | P a g e

48 | P a g e

49 | P a g e

50 | P a g e

51 | P a g e

52 | P a g e

53 | P a g e

54 | P a g e

55 | P a g e

56 | P a g e

57 | P a g e

58 | P a g e

59 | P a g e

60 | P a g e

61 | P a g e

APPENDIX C – DATA ENTRY POINTS

1) Student data entry points

a. Student hidden field in profile

b. Changing ‘id’ value to edit another student’s information

62 | P a g e

2) Admin data entry points

a. Add a student

b. Add grades

63 | P a g e

c. Add a teacher

64 | P a g e

d. Add a subject

3) Admin hidden fields

a. Update student information

b. Update student grades

65 | P a g e

c. Edit teacher information

66 | P a g e

67 | P a g e

APPENDIX D – SQL INJECTION

a) The tables within the vision database

b) The ‘users’ table with the usernames and the hashed passwords dumped

68 | P a g e

c) The injection command suggested by SQLmap

69 | P a g e

APPENDIX E – COOKIE DECRYPTION

70 | P a g e

APPENDIX F – ERROR HANDLING

a) Login page – after failed ‘UNION’ attack

b) Admin page– change subject grade for a student

